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Introduction
Here we have addressed the case of elastic scattering 

as  it  occurs  in  Transmission  Electronic  Microscopy 
(TEM).  Our  main  goal  is  to  determine the  atomic 
structure  of  a  sample  given  the  electronic  wave  it 
diffracts.

In the forward problem, we assume that the potential 
created by the sample is  known at  the electronic scale, 
and  the  diffracted  wave  function  is  calculated  at  the 
output  of  the  sample  by  means  of  an  efficient  Finite 
Elements (FE) computation.

In the inverse problem, the diffracted wave function is 
measured  experimentally,  and  the  unknown  potential 
associated  with  the  sample  is  sought  after  using  an 
iterative strategy based on FE mesh adaption.

Theoretical  framework  of  the  forward 
electronic scattering problem

The  incident  electron  is  classically  considered  as  a 
planar wave function   associated 
with a wave vector  . In an infinite, empty domain  , 
this  wave  function  should  verify  the  following 
Schrödinger equation expressed in atomic units (a.u., i.e. 
distances in Bohr and energies in Hartree)

where   is  the  energy  of  the  incident 
electron and  is the Laplacian operator.

The sample's spatial domain   is characterized by a 
potential  ,  associated with the electrons and nuclei  of 
the sample, which outside decreases rapidly.

By  introducing  several  classical  but  nonrestrictive 
assumptions regarding the different energies involved in 
the problem, the  diffracted wave function  ,  which is 
defined  as  the  difference  between  the  whole  electronic 
wave  function   and  the  incident  wave  function  , 
should verify the following Helmholtz equation:

(1)

If the defects of the microscope's lenses are not taken 
into account, the square modulus of the whole electronic 
wave function   is directly obtained 
on a virtual plane  located at the output of the sample 

, as it is depicted in Figure 1.

Figure 1. Considered spatial domain.

FE implementation of the forward electronic 
scattering problem

The use of the FE method should make the resolution 
of the forward problem for any kind of specimen possible, 
including specimens with defects or lacunae.

The  first  difficulty  is  how  to  deal  with  the  empty 
domain, which should be infinite. To circumvent this, we 
assume  that  the  diffracted  wave  function  is  of  the 
evanescent kind far from the specimen. This way we can 
introduce a boundary  for  such that, on :

(2)

where  is the outer unit normal of the boundary  [1].
The second difficulty lies in the high frequency aspect 

of  the  problem  to  solve.  Considering  estimates  of  the 
incident wavelength and of  interatomic distances within 
the  specimen,  the  computation  of  even  one  single 
crystalline cell would require about one billion DOFs to 
get sufficiently accurate results. So we have introduced a 
paraxial approximation to drop the computation costs.

Paraxial approximation
The  paraxial  approximation  consists  in  finding  the 

unknown  such that:

(3)

where   is  the  incident  wave  vector,  along  the 
microscope's  axis  in  the  case  of  parallel  illumination. 
Important  is  to  stress  that  this  assumption  does  not 
necessarily  imply   that  the  diffracted  wave vectors  are 
close  to  the  -direction,  whereas  it  fits  well  the 
experimental TEM.
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By using  (3) into  (1) and  (2),  we get  the following 
equations to be solved for the forward problem:

(4)

(5)

Formulation of the inverse problem
The  inverse  problem  consists  in  determining  the 

potential  spatially-variable in  such that the intensity 
 of  the  whole  wave function  on  the  virtual 

plane  is as close to the measured intensity  at 
the microscope's output as possible. The underlying goal 
is to be able to locate a defect within the studied sample.

To  achieve  this,  we  introduce  the  following  misfit 
function to be minimized:

 

(6)

where  is a regularization parameter to be set, and  a 
potential chosen a priori, such as the potential associated 
with the perfect crystal in the case of a defect's detection.

This  misfit  function  is  minimized  by  means  of  an 
adjoint state method to express the gradient of the misfit 
function. The adjoint state  verifies:

(7)

(8)

(9)

where   and   stand  for  the  conjugate  and  the 
discontinuity jump respectively.

In this  case,  the minimization of  the  misfit  function 
leads to:

(10)

The resolution of the inverse problem thus results in 
solving equations  (4) (7)  (10) for  unknowns   
and with boundary conditions (5) (8) (9).

Iterative strategy with adaptive FE meshes
Since the sought potential   is spatially-variable, we 

choose to apply the strategy described in  [2] where the 
discretization  of   is  made  by  means  of  a  FE  mesh 
different from the one used to discretize (4) and (7)  . As 
Bangerth in [3], we stated in [2] that using a coarse mesh 

to discretize the sought field and solve (10) behaves as 
an additional regularization for the inverse problem.

This regularization can be applied in an iterative way, 
by progressively refining this coarse mesh using classical 
mesh adaption criteria, thus improving the description of 
the identified field .

Example and conclusion
To illustrate this iterative strategy, experimental data 

are  simulated  using  the  equations  (4) (5) for  a  -iron 
-thick specimen with a single lacuna. This forward 

problem is solved with 600,000 DOFs in a  TEM 
using  a  Yukawa's  potential  [4] for  ,  depicted  as 
isovalues superposed on the calculated wave intensity on 
the left of Figure 2.

A first result of identification is presented on the right 
of Figure 2, depicting the identified discrepancy between 
the  sought  potential   and  the  ideal  potential   
associated with the crystal with no defect when using the 
initial coarse mesh for the discretization of .

Figure 2. Simulated experimental data (left) and 
identification of the associated lacuna (right).

Work  is  on  progress  about  the  right  choice  of  the 
adaption  criteria  for  refining  the  initial  coarse  mesh  in 
order to improve the identification of the potential .
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